Note

THERMODYNAMICS OF THE SILVER–SILVER ION ELECTRODE AND THERMODYNAMIC SOLUBILITY PRODUCT CONSTANTS OF SILVER HALIDES AND PSEUDO-HALIDES IN UREA–WATER MIXTURES

UPENDRA N. DASH, BANKA B. DAS, UTTAM K. BISWAL, TAPODHAN PANDA, NARENDRA K. PUROHIT, DUSHMANTA K. RATH and SUBHANKAR BHATTACHARYA

Department of Chemistry, Bhadrak College, Bhadrak 756100 (India) (Received 10 August 1982)

Recently the energetics of ion-solvation in aquo-organic solvents have received increased attention. These are of much importance as they constitute the basis of theories of ion-solvent interactions and provide an insight into the structural aspects of the solvents. Several workers [1-22] have presented studies on the behaviour of electrolytes in aqueous organic solvent mixtures employing electromotive force measurements of galvanic cells using the silver-silver halide electrodes in conjunction with a reference electrode. No work seems to have been done on the study of the behaviour of the Ag/Ag⁺ electrode in binary water-organic solvent mixtures. However, the standard potentials of this electrode are known in water [23] and formamide [24]. This paper reports the results obtained for the potentiometric measurements of cells involving the Ag/Ag⁺ electrode in conjunction with the Ag/AgCl electrode in urea + water solvents at different temperatures ranging from 5 to 35° C, and the transfer thermodynamic quantities accompanying the process Ag⁺ (in water) \rightarrow Ag⁺ (in urea + water)

EXPERIMENTAL

Sodium nitrate, sodium chloride, silver nitrate and urea were of analytical grade or guaranteed reagents and used without further purification. Solvents of various compositions were made up by weight in conductivity water. The stock solvents as well as sodium nitrate, sodium chloride and silver nitrate solutions were kept at a low temperature ($\sim 5^{\circ}$ C) [17]. Equimolar solutions of sodium nitrate, sodium chloride and silver nitrate were prepared from the stock solutions by double dilution method.

Silver-silver chloride electrodes were prepared according to the method described in the literature [25]. Silver electrodes were of thermal electrolytic

Wt. % urea	t(°C)									
	5	10	15	20	25	30	35			
0	0.8186	0.8138	0.8089	0.8031	0.7991	0.7950	0.7891			
11.52	0.8194	0.8136	0.8075	0.8021	0.7971	0.7919	0.7856			
20.31	0.8288	0.8230	0.8172	0.8122	0.8073	0.8018	0.7960			
29.64	0.8359	0.8298	0.8234	0.8165	0.8103					
36.83	0.8404	0.8353	0.8303	0.8248	0.8195	0.8136	0.8084			

Standard molar potentials (E_c^0 in abs. volts) for the Ag(s)-Ag⁺ electrodes in urea-water mixtures from 5 to 35°C

type and freshly prepared for each run. The cell vessels were of an all-glass type as described earlier [19].

The general experimental details, such as preparation of the cell solutions, setting up of the cells, EMF and conductance measurements, were essentially similar to those described earlier [19,21]. All measurements were made in water baths maintained at appropriate temperatures within $\pm 0.1^{\circ}$ C.

RESULTS AND DISCUSSION

The EMF, E, of cell (A) Ag(s), AgCl(s), NaCl(c), NaNO₃(c)//NaNO₃(c), AgNO₃(c), Ag(s) (A)

TABLE 2

Constants of eqn. (3) for molar (c), molal (m) and mole fraction (N) scales in urea-water mixtures

Wt.% urea	x	A	В	С	$10^{3}D$
11.52	с	63.94461	-2.444104	0.430336	- 1.4729
	m	94.31183	- 3.622856	0.637883	-2.18142
	Ν	99.901957	- 3.831718	0.674208	- 2.29902
20.31	с	48.09698	-1.828624	0.32089	- 1.09534
	m	48.010389	- 1.819383	0.320104	- 1.09186
	Ν	43.470444	- 1.643898	0.28909	-0.986
29.64	с	- 62.000492	2.471987	-0.436274	1.505233
	m	-61.11766	2.408676	-0.4240195	1.4416
	Ν	- 62.008654	2.471349	-0.436274	1.505233
36.83	с	-62.591	2.4709608	-0.4352061	1.48478
	m	- 67.2179	2.651346	-0.467006	1.59412
	Ν	- 94.2851	3.70337	-0.652432	2.2287

TABLE 1

TABLE 3

Values of the standard potentials of the silver-silver ion electrode on the molar, molal and mole fraction scales in urea-water mixtures, and thermodynamic quantities on the molal scale at $25^{\circ}C$

	Wt. % urea				
	11.52	20.31	29.64	36.83	
$E_c^0(V)$	0.7975	0.8072	0.8103	0.8189	
$E_{\rm m}^{\rm 0}({\rm V})$	0.7952	0.8046	0.8059	0.8139	
$E_{N}^{0}(V)$	0.5940	0.6061	0.6120	0.6227	
$-10^{-3} \Delta G_{\rm m}^0 ({\rm J mole^{-1}})$	76.73	77.64	77.76	78.53	
$-10^{-3} \Delta H_{\rm m}^0$ (J mole ⁻¹)	104.0	106.2	118.7	112.8	
$-\Delta S_{\rm m}^0({\rm J}\ {\rm mole}^{-1}\ {\rm K}^{-1})$	93.0	97.0	137.0	114.0	

can be expressed as

$$E = E_{Ag,Ag^{+}}^{0} - E_{Ag,AgCl}^{0} + (RT/F) \ln[Ag^{+}][Cl^{-}] \gamma_{\pm}^{2} + E_{j}$$
(1)

where the symbols have their usual meaning

Using the molar concentrations of $AgNO_3$ and NaCl solutions and expressing the mean molar activity coefficients by the Debye-Hückel expressions, eqn. (1) becomes

$$E = E_{Ag,Ag^{+}}^{0} - E_{Ag,AgCl}^{0} + 2k \log C - \frac{2 k A (2C)^{1/2}}{1 + (2C)^{1/2}} + 2k\beta_{\pm}C + E_{j}$$

TABLE 4

Transfer thermodynamic quantities and primary medium effect (mole fraction scale) in different urea-water mixtures at $25^{\circ}C$

	Wt. % urea					
	11.52	20.31	29.64	36.83		
$-\Delta G_1^0$ (J mole ⁻¹)	106.14	1273.69	1842.99	3792.11		
$-\Delta G_{\rm tel}^0({\rm J}\ {\rm mole}^{-1})$	44.66	74.56	100.27	117.06		
$-\Delta G_{\rm t,ch}^0(\rm J,mole^{-1})$	61.48	1199.13	1742.71	3675.05		
$\Delta S_{\rm L}^{0}$ (J mole ⁻¹ K ⁻¹)	8.0	2.0	-17.0	- 19.0		
ΔS_{tel}^0 (J mole ⁻¹ K ⁻¹)	0.27	0.45	0.66	0.75		
$\Delta S_{\text{t,ch}}^{0}$ (J mole ⁻¹ K ⁻¹))	8.00	1.09	- 17.77	- 19.37		
ΔH_1^0 (J mole ⁻¹)	2363.0	- 816.0	- 6958.0	- 8429.0		
$\Delta H_{\rm tel}^0$ (J mole ⁻¹)	35.0	60.0	98.0	107.0		
$\Delta H_{\rm t.ch}^{0}$ (J mole ⁻¹)	2328.0	-876.0	- 7055.0	- 8536.0		
lim log ^s γ _w	-0.0183	-0.2228	-0.3225	-0.5034		
$N \rightarrow 0$						

TABLE 5

$5 10 15 20 25 30 35$ $11.52 ext{ wt.\% urea}$ $X = CI$ $K_s^c \times 10^{10} 1.356 2.264 3.623 5.678 8.647 13.295 20.833$ $K_s^m \times 10^{10} 1.265 2.119 3.399 5.341 8.175 12.612 19.851$ $X = Br$ $K_s^c \times 10^{12} 0.234 0.455 0.850 1.508 2.615 4.569 8.054$ $K_s^m \times 10^{12} 0.234 0.416 0.700 1.410 2.472 1.411 5.455$
$X = CI$ $K_{s}^{c} \times 10^{10}$ $I.356$ $Z.264$ $I.356$ $Z.264$ $I.356$ $Z.264$ $I.356$ $Z.264$ $I.265$ $Z.119$ $Z.125$
$X = CI$ $K_{s}^{c} \times 10^{10}$ 1.356 2.264 3.623 5.678 8.647 13.295 20.833 $K_{s}^{m} \times 10^{10}$ 1.265 2.119 3.399 5.341 8.175 12.612 19.851 $X = Br$ $K_{s}^{c} \times 10^{12}$ 0.234 0.455 0.850 1.508 2.615 4.569 8.054 $K_{s}^{m} \times 10^{12}$ 0.220 0.410 0.700 1.410 2.412 1.508
$K_s^c \times 10^{10}$ 1.356 2.264 3.623 5.678 8.647 13.295 20.833 $K_s^m \times 10^{10}$ 1.265 2.119 3.399 5.341 8.175 12.612 19.851 $X = Br$ $K_s^c \times 10^{12}$ 0.234 0.455 0.850 1.508 2.615 4.569 8.054 $K_s^m \times 10^{12}$ 0.230 0.410 0.700 1.410 2.412 4.559
$K_{\rm s}^{\rm c} \times 10^{10} \qquad 1.265 \qquad 2.119 \qquad 3.399 \qquad 5.341 \qquad 8.175 \qquad 12.612 \qquad 19.851$ X = Br $K_{\rm s}^{\rm c} \times 10^{12} \qquad 0.234 \qquad 0.455 \qquad 0.850 \qquad 1.508 \qquad 2.615 \qquad 4.569 \qquad 8.054$ $K_{\rm s}^{\rm m} \times 10^{12} \qquad 0.220 \qquad 0.410 \qquad 0.700 \qquad 1.410 \qquad 2.472 \qquad 4.669 \qquad 8.054$
$X = Br$ $K_s^c \times 10^{12} \qquad 0.234 \qquad 0.455 \qquad 0.850 \qquad 1.508 \qquad 2.615 \qquad 4.569 \qquad 8.054$ $K_s^m \times 10^{12} \qquad 0.220 \qquad 0.410 \qquad 0.700 \qquad 1.410 \qquad 2.472 \qquad 4.569 \qquad 8.054$
$K_s^c \times 10^{12}$ 0.234 0.455 0.850 1.508 2.615 4.569 8.054
Km > 10 ¹² 0.220 0.410 0.200 1.410 0.472 4.444 = 555
$\mathbf{K}_{s}^{**} \times 10^{12}$ 0.220 0.418 0.798 1.419 2.472 4.444 7.652
X = I
$K^{c} \times 10^{16}$ 0.194 0.457 1.036 2.211 4.587 9.528 19.934
$K_{\rm c}^{\rm m} \times 10^{16}$ 0.181 0.428 0.971 2.080 4.336 8.915 18.993
V – N
$\frac{A - N_3}{V^2} = \frac{1402}{2428} = \frac{2428}{4070} = \frac{4070}{6604} = \frac{6604}{10505} = \frac{16988}{16988} = \frac{27466}{10505}$
$K_s \times 10^9$ 1.308 2.2428 4.070 0.004 10.303 10.888 27.460
$R_s \sim 10$ 1.500 2.271 5.017 0.212 5.751 10.021 20.100
X = CNS
$K_s^c \times 10^{12}$ 0.359 0.742 1.473 2.777 6.246 9.554 18.026
$K_s^{\text{m}} \times 10^{12}$ 0.335 0.694 1.382 2.612 5.905 9.064 17.174
20.31 wt. % urea
X = CI
$K_{\rm s}^{\rm c} \times 10^{10}$ 2.213 3.432 5.288 7.919 11.985 18.364 28.812
$K_s^{\rm m} \times 10^{10}$ 1.941 3.062 4.733 7.111 10.819 16.630 26.236
X = Br
$K_{\rm c}^{\rm c} \times 10^{12}$ 0.354 0.674 1.252 2.197 3.814 6.574 11.344
$K_{\rm s}^{\rm m} \times 10^{12}$ 0.309 0.602 1.120 1.973 3.444 5.953 10.330
Y – I
$K^{c} \times 10^{16}$ 0.201 0.686 1.556 3.208 6.875 14.070 28.727
$K_{\rm s}^{\rm m} \times 10^{16}$ 0.255 0.612 1.390 2.961 6.222 12.749 26.127
N ₅ × 10 0.255 0.012 1.550 2.501 0.222 12.745 20.157
$X = N_3$
$K_s^{\circ} \times 10^{\circ}$ 2.343 3.874 6.263 9.772 15.146 23.474 36.291
$\mathbf{K}_{s}^{m} \times 10^{\circ} - 2.055 - 3.436 - 3.606 - 8.777 - 13.672 - 21.255 - 33.042$
X = CNS
$K_s^c \times 10^{12}$ 0.637 1.274 2.441 4.468 8.119 14.574 26.574
$K_{\rm s}^{\rm m} \times 10^{12}$ 0.557 1.138 2.185 4.011 7.329 13.200 23.880
29.64 wt. % urea
X = Cl
$K_{\rm s}^{\rm c} \times 10^{10}$ 2.745 4.589 7.530 12.374 19.860 30.384 43.894
$K_s^{\rm m} \times 10^{10}$ 2.318 3.889 6.408 10.575 17.060 26.212 38.054
X = Br
$K_{*}^{c} \times 10^{12}$ 0.510 0.987 1.865 3.407 6.352 11.894 17.559
$K_s^m \times 10^{12}$ 0.431 0.837 1.587 2.996 5.456 9.397 15.223

Solubility product constants, on the molar (K_s^c) and molal (K_s^m) scales of AgX (X = Cl, Br, I, N₃ or CNS) in urea – water mixtures at different temperatures

TABLE 5 (continued)

AgX	<i>t</i> (°C)							
	5	10	15	20	25	30	35	
$\overline{X = I}$								
$K_{\rm s}^{\rm c} \times 10^{16}$	0.468	1.099	2.502	5.649	12.229	24.814	47.043	
$K_{\rm s}^{\rm m} \times 10^{16}$	0.396	0.932	2.129	4.828	10.505	21.404	40.785	
$X = N_3$								
$K_{\rm s}^{\rm c} \times 10^9$	3.084	5.310	8.892	15.045	24.445	38.176	55.962	
$K_{\rm s}^{\rm m} \times 10^9$	2.605	4.501	7.567	12.860	20.997	32.931	48.516	
X = CNS								
$K_{\rm s}^{\rm c} \times 10^{12}$	0.992	2.049	4.062	8.054	15.431	28.035	47.676	
$K_{\rm s}^{\rm m} \times 10^{12}$	0.838	1.738	3.457	6.885	13.255	24.182	41.333	
	36.83 v	vt. % urea	ì					
X = Cl								
$K_{\rm s}^{\rm c} \times 10^{10}$	3.324	5.203	8.235	12.896	20.229	30.865	44.916	
$K_{\rm s}^{\rm m} \times 10^{10}$	2.696	4.237	8.111	10.597	20.323	30.881	44.936	
$\mathbf{X} = \mathbf{B}\mathbf{r}$								
$K_{\rm s}^{\rm c} \times 10^{12}$	0.658	1.192	2,200	3.916	6.973	12.036	19.660	
$K_{\rm s}^{\rm m} \times 10^{12}$	0.534	0.971	1.801	3.217	5.836	9.994	16.417	
$\mathbf{X} = \mathbf{I}$								
$K_{\rm s}^{\rm c} \times 10^{16}$	0.633	1.483	3.073	6.619	14.125	29.026	56.156	
$K_{\rm s}^{\rm m} \times 10^{16}$	0.513	1.208	2.515	5.439	11.681	24.104	46.892	
$X = N_3$								
$K_s^c \times 10^9$	3.496	5.646	9.294	15.104	24.637	39.057	58.992	
$K_{\rm s}^{\rm m} \times 10^9$	2.841	4.599	7.607	12.410	20.372	32.431	49.263	
X = CNS								
$K_{\rm s}^{\rm c} \times 10^{12}$	1.237	2.377	4.597	8.728	16.519	30.206	52.541	
$K_{\rm s}^{\rm m} \times 10^{12}$	1.002	1.936	3.762	7.171	13.661	25.084	43.873	

or

$$E_{\rm c}^{0} = E + E_{\rm Ag,AgC1}^{0} - 2k \log C + \frac{2kA(2C)^{1/2}}{1 + (2C)^{1/2}} - E_{\rm j} = E_{\rm Ag,Ag}^{0} + bC$$
(2)

. ...

where k = 2.3026(RT/F) and $b = 2k\beta_{\pm}$ (here β_{\pm} is the usual constant in the Debye-Hückel expression for the activity coefficient, i.e., $\log \gamma_i = -Az_i^2 \mu^{1/2}/1 + \mu^{1/2} + \beta_i \mu$, where i is Ag⁺ or Cl⁻).

The values of the liquid junction potentials, E_j , were calculated from Lewis and Sargent's equation [21] and vary in the range 0.1–0.2 mV at all temperatures in different solvents. Linear extrapolations of E_c^0 against C can be made to obtain values of E_{Ae,Ae^+}^0 .

be made to obtain values of E^0_{Ag,Ag^+} . The values of $E^0_{Ag,AgCl}$ (molar scale) needed for calculation of $E^{0'}_c$ [eqn. (2)] at different temperatures in urea + water solvents were calculated using the density, etc., of the mixed solvent from the values on the molal scale available in the literature [17] and that of A, the Debye-Hückel constant, were also taken from the literature [17]. The values of E_c^0 obtained on extrapolating $E_c^{0'}$ to C = 0 are listed in Table 1. The average standard deviations in the values of E_c^0 is ± 0.4 mV.

As usual (21,22], standard potentials on the molal (E_m^0) and mole fraction

TABLE 6

Constants of eqn. (4) for molar (c) and molal (m) scales, in urea-water mixtures for different silver salts

AgX	р	Wt. % urea								
		11.52	20.31	29.64	36.83					
X = Cl										
A	с	- 3388.3625	- 3193.21806	- 3557.3659	-3227.8324					
В		2.31908	1.8115805	3.2397	2.130926					
σ		0.056	0.053	0.059	0.054					
A	m	- 3414.4198	- 3238.4358	- 3456.9672	- 3264.3353					
B		2.380822	1.919028	2.819517 ⁻	2.1708104					
σ		0.057	0.054	0.058	0.054					
X = Br										
A	с	-4377.3368	-4303.4905	-4374.4235	- 4209.7279					
B		3.117256	3.028729	3.461901	2.961936					
σ		0.073	0.072	0.073	0.070					
A	m	- 4430.1128	-4348.7078	- 4407.2344	-4246.2309					
B		3.179387	3.136161	- 3.50577	3.002335					
σ		0.073	0.073	0.074	0.071					
X = I										
Α	с	- 5740.7416	- 5688.5635	- 5701.4851	- 5557.7618					
B		3.93685	3.93089	4.198171	3.79651					
σ		0.096	0.095	0.095	0.093					
A	m	- 5767.4245	- 5733.7599	- 5734.3063	- 5594.2666					
В		4.002295	4.03828	4.242361	3.836401					
σ		0.096	0.096	0.096	0.093					
$\mathbf{X} = \mathbf{X}$	N ₃									
A	c	- 3690.1000	- 3398.0552	-3582.0049	- 3504.7705					
B		4.415784	3.590191	4.390632	4.143768					
σ		0.062	0.057	0.060	0.063					
Α	m	- 3716.2120	- 3443.2729	- 3614.8159	- 3538.9149					
B		4.479063	3.697625	4.434801	4.178425					
σ		0.062	0.064	0.061	0.059					
X = CNS										
A	c	- 4848.2296	-4608.1187	-4789.0403	- 4648.5498					
В		5.004289	4.37966	5.240511	4.810867					
σ		0.081	0.077	0.080	0.078					
A	m	-4874.3065	-4653.3364	-4821.8512	-4685.0528					
В		5.067587	4.487094	5.28468	4.850752					
σ		0.081	0.078	0.082	0.078					

 (E_N^0) scales were calculated from that on the molar scale (E_c^0) . The standard potentials (E^0) on different scales at various temperatures for any solvent were fitted, by the method of least-squares, to an equation of the form [26]

$$E_{*}^{0} = A + BT + CT \ln T + DT^{2}/2$$
(3)

where x is c, m or N and T is any temperature in kelvins. The constants A, B, C and D of eqn. (3) are shown in Table 2. The average deviation between the experimental values (Table 1) and the values calculated from eqn. (3) is within ± 0.4 mV. The E^0 values at 25°C are listed in Table 3, along with those in water [23].

The standard thermodynamic quantities (ΔG^0 , ΔS^0 and ΔH^0) on the molal scale for the electrode reaction

$$Ag^+ + e \rightarrow Ag(s)$$

at different temperatures in various solvents have been calculated by the usual relations [21]. These values for 25°C are included in Table 3.

As reported previously [21,22], the standard thermodynamic quantities, ΔG_t^0 , ΔS_t^0 and ΔH_t^0 , for the transfer process

 Ag^+ (in water) $\rightarrow Ag^+$ (in urea + water)

have been evaluated at different temperatures for various solvents. The values of these quantities at 25°C are presented in Table 4 which also includes the change in electrostatic Gibbs energy ($\Delta G_{t,el}^0$), the electrostatic entropy ($\Delta S_{t,el}^0$) and the electrostatic contribution for the change of enthalpy ($\Delta H_{t,el}^0$). These values of the transfer quantities were obtained by the usual equations [21] on the mole fraction basis [21,22].

Inspection of Table 4 shows that as the proportion of urea increases, the ΔG_t^0 value for the Ag⁺ ion becomes increasingly negative. The negative value of ΔG_t^0 signifies that the transfer of the Ag⁺ ion from water to urea + water mixtures is increasingly favourable. Thus, the Ag⁺ ion appears to be in a lower Gibbs energy state and hence, more strongly stabilized in mixed solvents than in water. It is known that all structure-forming processes, including solvation of ions, are exothermic and accompanied by a decrease in entropy, and the structure-breaking processes, including desolvation of ions, are endothermic and accompanied by gain of entropy. The decrease in values of ΔS_t^0 and ΔH_t^0 indicates that for a transfer process the amount of order created by the Ag⁺ ion in the mixed solvent is more.

Table 4 shows the primary medium effect values of the Ag^+ ion in various urea + water mixtures at 25°C. Since the primary medium effect which is represented by [21]

$$\lim_{N\to 0} \left(\log {}^{s}\gamma_{w}\right) = \left[\left(E_{N}^{0}\right)_{w} - \left(E_{N}^{0}\right)_{s}\right]/2.3026(RT/F)$$

where the limit term indicates the primary medium effect, results from a difference of the ion-solvent interactions at infinite dilution in each solvent, the magnitude of this effect should reflect the stabilization of the ion in the

solvent concerned. The resulting negative magnitudes of this quantity presumably indicate that the escaping tendency of the Ag^+ ion is less in urea + water mixtures than in pure water. This is consistent with the conclusions based on the fact that the Ag^+ ion is more strongly stabilized in mixed solvents than in water medium.

The thermodynamic solubility products, K_s^0 , of silver halides and silver pseudo-halides in various compositions of urea + water mixtures have been calculated from the values of standard potentials by means of the equation

$$\ln K_{\rm s}^{0} = \left[E_{\rm Ag, Ag X}^{0} - E_{\rm Ag, Ag^{+}}^{0} \right] / (F/RT)$$

where $E_{Ag,AgX}^0$ is the standard molar potential of Ag,AgX (X = Cl, Br, I, N₃, or CNS) electrode and is obtained from the literature [17,21,22] over the temperature range under investigation. The values for K_s^0 on the molarity (K_s^c) and molality (K_s^m) scales at the experimental temperatures are shown in Table 5. The data for K_s^m were calculated from K_s^c/ρ^2 . The solubility product data were fitted by least-squares to an equation of the form [27]

$$\log K_{\rm s}^{\rm p}({\rm AgX}) = A/(T/{\rm K}) + B \tag{4}$$

where p is c or m, X is Cl, Br, I, N₃ or CNS, A and B are the empirical constants, and T is any temperature in kelvins. The constants A and B of eqn. (4) are reported in Table 6 along with the standard deviation, σ , for the precision of the least-squares fit; the correlation coefficient for the relations is within 1.00.

REFERENCES

- 1 A. Patterson and W.A. Felsing, J. Am. Chem. Soc., 64 (1942) 1478.
- 2 R.L. Moore and W.A. Felsing, J. Am. Chem. Soc., 69 (1947) 1076.
- 3 M.H. Everdell, J. Chem. Soc., (1949) 2289.
- 4 H.S. Harned and D.S. Allen, J. Phys. Chem., 58 (1954) 191.
- 5 B.H. Claussen and C.M. French, Trans. Faraday Soc., 51 (1955) 708, 1124.
- 6 I.T. Oiwa, J. Phys. Chem., 61 (1957) 1587.
- 7 C.L. LeBas and M.C. Day, J. Phys. Chem., 64 (1960) 465.
- 8 P.S. Gentile, L. Eberle, M. Cefola and A.V. Celiano, J. Chem. Eng. Data, 8 (1963) 420.
- 9 R. Gary and R.A. Robinson, J. Chem. Eng. Data, 9 (1964) 376.
- 10 L.W. Marple, J. Chem. Eng. Data, 12 (1967) 437.
- 11 U. Sen, K.K. Kundu and M.N. Das, J. Phys. Chem., 71 (1967) 3665.
- 12 R.N. Roy, W. Vernon and A.L.M. Bothwell, J. Chem. Soc. A, (1971) 1242; Electrochim. Acta, 17 (1972) 5.
- 13 K.H. Khoo, J. Chem. Soc. A, (1971) 2932.
- 14 T. Mussini, C. Massarani-Formaro and P. Andrigo, J. Electroanal. Chem., 33 (1971) 189.
- 15 K.H. Khoo, J. Chem. Soc., Faraday Trans., 68 (1972) 554.
- 16 T. Mussini, P. Longhi and P. Giammario, Chim. Ind. (Milan), 54 (1972) 3.
- 17 K.K. Kundu and K. Mazumdar, J. Chem. Soc., Faraday Trans. 1, 69 (1973) 806, 1422.
- 18 P.K. Das and U.C. Mishra, Electrochim. Acta, 22 (1977) 59.
- 19 R.C. Das, U.N. Dash and K.N. Panda, Electrochim. Acta, 24 (1979) 99.

- 20 M.M. Elsemongy and A.S. Fouda, J. Electroanal. Chem., 114 (1980) 25.
- 21 U.N. Dash. and M.C. Padhi, Thermochim. Acta, 39 (1980) 335; 45 (1981) 245.
- 22 U.N. Dash and M.C. Padhi, J. Electroanal. Chem., 122 (1981) 147.
- 23 H.S. Harned and B.B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold, New York, 1967.
- 24 U.N. Dash and S.K. Nayak, Can. J. Chem., 59 (1981) 3030.
- 25 R.C. Das, U.N. Dash and K.N. Panda, Can. J. Chem., 54 (1976) 1916.
- 26 U.N. Dash and S.K. Nayak, Can. J. Chem., 58 (1980) 992.
- 27 M. Salomon (Ed.), Solubility Data Series, Vol. 3, IUPAC Publications, Pergamon Press, New York, 1979.